이번 글에서는 통합을 고려할 수 있는 다양한 경우를 설명하겠습니다. 다양한 케이스를 소개하지만 결국은 데이터의 본질이 유사하다는 것으로 통하게 됩니다.
역할을 관리하는 엔터티는 [그림1]과 같이 통합 모델을 사용할 때가 많습니다.
[그림1]
사원은 특정 계좌에 대해 관리사원·유치사원·주문사원 등 여러 가지 역할을 할 수 있습니다. 여러 역할에 따른 엔터티가 개별로 존재하는 것이 아니라 계좌관계사원 엔터티와 같은 통합 엔터티로 존재하는 것이 바람직합니다.
[그림2]와 같이 대칭적인 업무를 관리하는 데이터도 통합을 고려할 수 있습니다.
[그림2]
이경우 업무 성격은 대칭적이지만 데이터 성격은 유사합니다. [그림2]는 식별자가 같지만 식별자가 다르더라도(매출전표번호와 매입전표번호) 통합할 수 있습니다.
매도와 매입, 입고와 출고 등도 대칭적인 업무에 해당하는 데이터입니다.
[그림3]은 계층 관계가 존재하는 엔터티입니다. 계층 관계도 통합을 고려해야할 주요 대상입니다.
[그림3]
엔터티 통합은 대부분 수평적인 관계의 엔터티가 통합돼 서브타입(Subtypes)이 발생하지만, 계층 관계의 엔터티 통합은 수직적 통합으로 순환(Recursive) 관계가 발생합니다.
[그림3]은 계층 때문에 다른 데이터간의 상하 관계처럼 보이지만 결국은 유사한 데이터입니다.
[그림4] 엔터티에는 공통 속성이 보이는데, 이때 공통 속성이 별도의 데이터 성격을 지닌다면 통합을 고려할만 합니다.
[그림4]
여러 계좌 엔터티에 통보 연락처를 관리하는 속성이 공통으로 존재합니다. 통보 주소·이메일·전화번호는 이전 글의 [그림5]와 유사하게 별도의 엔터티에서 통합할 수 있습니다.
아래의 [그림5]는 배타 관계가 발생한 모델인데요. [그림4]까지 모델은 순수하게 엔터티를 통합하는 개념이지만 [그림5]는 관계를 통합하는 개념이 포함돼 있습니다.
[그림5]
[그림5]의 거래내역 엔터티에 많은 관계가 배타 관계로 존재합니다. 배타 관계는 모델의 구조를 복잡하게 만들고, 자연히 복잡한 조인(Join)이 발생해 바람직하지 않은 관계입니다. 이에 대해서는 후에 자세하게 설명하겠습니다.
어쨌든 거래내역 엔터티에 배타 관계를 발생시킨 엔터티(주식종목·채권종목·선물옵션종목·수익증권종목)를 통합하면 거래내역 엔터티에는 배타 관계가 발생하지 않습니다.
그리고 통합해야 좋은 대표적인 엔터티는 집계 엔터티입니다. 집계 엔터티는 집계하려는 기준에 따라 디멘젼이 달라집니다. 디멘젼이 다르면 식별자가 달라지는데요. 디멘젼이 유사하거나 포함 관계가 있다면 통합하는 것이 좋습니다(물론 집계하려는 내용이 같아야죠).
[그림6] 모델은 디멘젼이 다르긴 하지만 유사하고, 집계하려는 내용은 매출 총액으로 같습니다.
[그림6]
[그림6]의 디멘젼에는 포함 관계가 있습니다. 즉 월이 모여서 분기가 됩니다. 따라서 월에 대한 총액만 있어도 분기는 합쳐서 구할 수 있습니다.
상품별월매출 엔터티에서 2030년 1월부터 3월까지 매출 총액을 더하면 분기의 총액이 됩니다. 굳이 상품별분기매출 엔터티를 만들어 위에서 더한 값과 2030년 1분기 매출 총액이 달라지는 것을 걱정할 필요가 없습니다(간혹 성능 때문에 중간 단계의 엔터티를 만드는데 반드시 필요한지 숙고해야 합니다).
뷰(화면)가 달라서 데이터를 별도로 보관하는 것은 무결성 차원에서 바람직하지 않습니다. 정정 데이터에 대한 처리 문제와 성능 문제 등으로 데이터를 별도로 저장해서 관리해야 할 때가 있지만 여느 엔터티와 마찬가지로 유사한 집계 엔터티는 통합하는 것이 좋습니다
[그림7]은 집계하려는 내용까지 약간 다릅니다. [그림6]에서 조금 더 달라진 모델이죠.
[그림7]
월별 데이터는 매출 총액과 반품 총액을 관리하고 분기별 데이터는 매출 총액과 배송료 총액, 수수료 총액을 관리합니다.
비록 관리하는 속성이 약간 다르지만 데이터를 생성할 때 조금만 신경 쓰면 굳이 두 개의 엔터티를 관리하지 않아도 될 모델입니다.
[그림8]은 이전 모델보다는 디멘젼이 많이 다릅니다. 디멘젼 사이에 포함 관계도 없고요.
[그림8]
상품코드와 부서코드라는 전혀 다른 성격의 기준(Dimension)으로 집계를 했지만 집계하려는 내용은 같습니다. 이 경우도 엔터티 생성을 남발하는 것보다는 상품코드와 부서코드를 기준으로 매출액을 집계하면 하나의 엔터티에서 관리할 수 있습니다. 물론 이때는 기준이 달라져서 인스턴스가 더욱 많이 발생합니다.
인스턴스가 지나치게 증가하거나 집계 기준이 지나치게 복잡해질 때는 최종적으로 통합이 적합하지 않을 수도 있지만, 최소한 통합을 고려해보는 것은 의미가 있습니다.
이처럼 집계 엔터티는 집계하려는 내용(데이터 성격)과 집계하려는 기준(Dimension)을 고려하여 통합을 고민해 보는 것이 좋습니다. 사실 이걸 고민하는 것이 집계 데이터에 대한 요건을 만드는 것입니다.
생성이 다소 번거롭더라도 데이터 정합성에 문제가 발생하지 않아야 하는 것은 집계 엔터티에도 마찬가지로 적용하는 기본 원칙입니다.
마지막으로 엔터티 합체와 관련된 내용인데요. 엔터티 합체에도 데이터 통합 개념이 적용됩니다.
[그림9]와 같이 일대일 관계가 발생한 엔터티는 통합할 수 있습니다. 물론 이는 여러 번 언급했듯이 엄밀히는 엔터티 합체입니다.
[그림9]
첫 번째 모델은 성능을 고려해 덜 사용하는 속성을 분리한 것이고요(하지만 데이터 본질은 동일합니다). 두 번째 모델은 프로세스 흐름을 엔터티로 표현한 것입니다.
기본적으로 바람직하지 않지만 프로세스대로 엔터티를 분리하는 게 명확할 때도 있습니다. 이때 주의할 점은 결과(계약승인)를 여러 번에 걸쳐 입력할 수 있는지입니다. 즉 일대다 관계가 될 수 있는지 주의해야 합니다. 현재는 아니라도 미래에 그럴 수 있는지를요.
만약 일대다 관계일 수 있는데 합쳐 놓으면 일대다 관계로의 검토 자체가 불가능해집니다. 분리하려 해도 쉽지 않고요. 일대다 관계가 될 가능성이 있다면 반드시 [그림9]와 같이 엔터티를 분리해야 합니다.
비정규화를 하면서 엔터티가 통합될 수도 있습니다. [그림10]과 같은 정규형 모델에 성능 문제가 발생하면 엔터티를 합칠 수 있습니다. 즉 이 경우도 엔터티 합체에 가깝습니다.
[그림10]
주문의 기본 데이터를 관리하는 주문 엔터티와 주문 상품을 관리하는 주문내역 엔터티는 마스터(Master), 상세(Detail) 관계이면서 일대다(1:M) 관계의 모델인데요.
만약 주문한 상품을 빠르게 조회해야 하는 최우선의 요건이 있다면 주문내역 엔터티를 기준으로 마스터 성격의 데이터인 주문 엔터티를 합체하는 것이 유리합니다. 즉 주문내역 엔터티의 속성은 그대로 두고 주문 엔터티의 속성을 포함해 중복 관리합니다.
2정규형이나 3정규형 등의 모델도 하나의 엔터티로 합체할 수 있습니다.
이상으로 여러 가지 통합 대상 엔터티를 설명했는데요. 통합하거나 통합하지 않았다는 결과보다는 과정이 중요합니다. 과정은 깊게 고민해야 합니다.
통합하는 기준을 다시 간략하게 정리하면요. 아래 기준 중에 하나라도 만족되면 일단 통합을 고려하는 것이 좋습니다. 일반화의 정도에 따라 다르겠지만 아마 웬만하면 첫 번째 기준에 해당될 것입니다.
● 데이터의 본질(성격)이 유사하다
● 식별자가 동일하면서 유사한 속성이 존재한다
● 식별자는 다르지만 기초 속성이 유사하다
통합할 때는 아래와 같은 문제도 고민해야 합니다.
● 통합해도 성능 문제를 일으키지 않는다
● 현행 데이터를 마이그레이션하는 데 문제가 없다
통합 시 주의할 점에 대한 글도 참고하세요.
이상으로 통합을 고려할 엔터티에 대해 설명했습니다. 통합(Generalization)은 정규화(Normalization)와 함께 중요한 부분입니다. 많이 고민하여 기준을 세우는 것이 좋습니다.
'데이터 Story > 모델링 이론' 카테고리의 다른 글
서브타입은 어떻게 도출하는가? (0) | 2011.12.18 |
---|---|
서브타입(Subtypes)이란? (1) | 2011.12.04 |
어떤 경우에 통합을 고려하는가? - 두 번째 (0) | 2011.10.30 |
데이터 통합이 어려운 이유 - 데이터 통합에 대한 불편한 진실 (0) | 2011.10.12 |
어떤 경우에 통합을 고려하는가? (0) | 2011.10.06 |